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Ten years have passed since Emmanuelle Charpentier and 
Jennifer Doudna reported the mechanism underlying a bac-
terial immune system, CRISPR (clustered regularly inter-
spaced short palindromic repeats), which can be engineered 
to induce highly accurate, targeted mutations in any genome 
(Jinek et al. 2012). In the meantime, CRISPR innovations 
make it possible for plant molecular biologists and crop 
breeders to collaborate to improve crop productivity. For 
instance, improved soybean with high oleic acid and low 
linoleic and linolenic acids was generated by removing sev-
eral nucleotides in two fatty acid desaturase genes (Haun 
et al. 2014); the oils extracted from the edited soybean are 
now commercially available (Calyno™, Calyxt). CRISPR-
mediated base-editing has been used to produce herbicide-
resistant crops with no transgenes present crop genomes 
(Kang et al. 2019; Li et al. 2020). Plant structure (Xu et al. 
2016), fruit size, and nutrient content (Lemmon et al. 2018) 
have been improved via CRISPR.

In this special issue, we look back on the development of 
plant-genome-editing tools over the past 10 years and look 
into the future of crop genome-editing innovations that are 
made possible by diverse CRISPR systems. Alvarez et al. 
(2021) discussed the regulation issues with gene-edited 
crops. Naturally occurring mutations and edits of small 
insertion and deletion mutations or substitution mutations 
may be indistinguishable in crops, which may spur changes 
in regulations, as we have seen in the United States and else-
where (Alvarez et al. 2021). Plant virus has been modified to 
become both the cargo and the vehicle that delivers CRISPR 
components into plant cells. The most widely used CRISPR 
system consists of one large protein, an engineered endo-
nuclease (i.e. Cas9), and a short single-strand guide RNA 
to guide the nuclease to the target site. Plant DNA or RNA 
viruses may act as efficient vectors to CRISPR reagents into 

plant cells, including germ cells to generate edited progeny 
without plant regeneration. Kujur et al. (2021) summarized 
the development of a virus-induced gene-editing system 
and the current limitation of this system. Miladinović et al. 
(2021) reviewed how the CRISPR technology serves as 
a bridge from lab-based molecular biology to field-based 
crop breeding, describing in detail the traits of crops that 
have been targeted over the last decade. Huang et al. (2021) 
focused on how genome-editing technology can be used to 
change plant architecture that improves crop productivity. 
Biswas et al. (2021) discussed future directions of precise 
crop breeding; CRISPR systems that have been advanced 
to regulate haploid induction and to maintain heterosis in 
crops.

This special issue also covers innovations of genome-
editing in various crops: tomato, rice, petunia, and soybean. 
Tran et al. (2021) precisely removed the domain of the target 
protein, which enhanced stress tolerance in tomato. Jung 
et al. (2021a) showed that the photosynthetic ability of rice 
can be manipulated by genome-editing. Pharmaceutical 
protein production in plants can be complicated by glyco-
sylation patterns and Jung et al. (2021b) effectively altered 
glycosylation patterns of proteins in rice using CRISPR. Yu 
et al. (2021) innovated a method to edit petunia by deliv-
ering ribonucleoprotein into protoplasts to regenerate the 
whole plants from edited cells. Nagy et al. (2021) attempted 
to create a new combination of the NBS-LRR family that 
exists within the soybean genome in tandem-repeat form. 
The editing efficiency of a CRISPR system, which is mainly 
determined by the guide RNA, is especially examined in 
transformation-recalcitrant species such as soybean. Thus, 
Kim and Choi (2020) developed a method to examine guide 
RNA efficiency in soybean protoplasts prior to undertaking 
lengthy and laborious stable transformation.

CRISPR-based precision crop breeding is in its infancy. 
Incremental and revolutionary discoveries alike are in our 
view as we gaze into the future. By continuing research pro-
gress based on the foundation of innovations in this special 
issue of Plant Cell Reports, we can expect real improve-
ments in agricultural production and sustainability. By 
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understanding the molecular mechanisms of agronomic 
traits and maintaining genetic diversity of crops, the power 
of genome-editing tools for crop improvement can be 
unleashed.
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